Proposition $2 \rightarrow$ system of fundamental solutions of $k Z$ eq. around $u_{1}=u_{2}=0$ written as

$$
\Phi_{1}\left(u_{1}, u_{2}\right)=\varphi_{1}\left(u_{1}, u_{2}\right) u_{1}^{\frac{1}{k x} \Omega_{12}} u_{2}^{\frac{1}{k}\left(\Omega_{12}+\Omega_{13}+\Omega_{23}\right)}
$$

with holomorphic function $\varphi_{1}\left(u_{1}, u_{2}\right)$.
Φ_{1} is matrix-valued and diagonalized with respect to

$$
\left\{p_{\lambda}\right\}=
$$

("tree basis" of conformal blocks) Similarly, can construct horizontal sections of ε associated to

\longrightarrow perform coordinate ${ }^{\lambda_{4}}$ transformation

$$
Y_{2}-\zeta_{1}=v_{1} v_{2}, \quad \zeta_{2}=v_{2}
$$

$$
\left(v_{1} v_{2}=z_{3}-z_{2}, \quad v_{2}=z_{3}-z_{1} \Rightarrow v_{1}=\frac{z_{3}-z_{2}}{z_{3}-z_{1}}\right)
$$

\longrightarrow connection matrix ω is expressed around $v_{1}=v_{2}=0$ as

$$
\omega=\frac{1}{k}\left(\frac{\Omega^{(23)}}{v_{1}} d v_{1}+\frac{\Omega^{(12)}+\Omega^{(13)}+\Omega^{(23)}}{v_{3}} d v_{2}+\omega_{2}\right)
$$

where ω_{2} is hol. 1 -form around $v_{1}=v_{2}=0$ $\Omega^{(23)}$ and $\Omega^{(12)}+\Omega^{(13)}+\Omega^{(23)}$ are diagonalize simult aneonsly with respect to $\left\{P_{n}\right\}$.
Solutions of $K Z$ eq. around $v_{1}=v_{2}=0$ become:

$$
\Phi_{2}\left(v_{1}, v_{2}\right)=\varphi_{2}\left(v_{1}, v_{2}\right) v_{1}^{\frac{1}{R} \Omega^{(23)}} v_{2}^{\frac{1}{k}\left(\Omega^{(12)}+\Omega^{(13)}+\Omega^{(23)}\right)}
$$

where $\varphi_{2}\left(v_{1}, v_{2}\right)$ is hold around $v_{1}=v_{2}=0$.
Note that $u_{2}=z_{3}-z_{1}, \quad u_{1}=\frac{z_{2}-z_{1}}{z_{3}-z_{1}}$ and

$$
v_{2}=z_{3}-z_{1}, v_{1}=\frac{z_{3}-z_{2}}{z_{3}-z_{1}}
$$

$\Rightarrow \Phi_{1}$ corresponds to asymptotic region
(A) $z_{1}<z_{2} \ll z_{3}$ and Φ_{2} to the region
(B) $\quad z_{1}<z_{2}<z_{3}$
\rightarrow Analytic continuation from region (A) to region (B) gives
$\Phi_{1}=\Phi_{2} F$, where F is called connection matrix.

In terms of chiral vertex operators this gives Lemma 3:

In the region $0<\left|\zeta_{1}\right|<\left|\zeta_{2}\right|$ we have

$$
\begin{aligned}
\psi_{\lambda \lambda_{3}}^{\lambda_{4}}\left(\zeta_{2}\right) & \left(\psi_{\lambda_{1} \lambda_{2}}^{\lambda}\left(J_{1}\right) \otimes i d_{H_{\lambda_{3}}}\right) \\
& =\sum_{\mu} F_{\mu \lambda} \psi_{\lambda_{\mu}}^{\lambda_{4}}\left(\zeta_{2}\right)\left(i d_{H_{\lambda_{1}}} \otimes \psi_{\lambda_{2} \lambda_{3}}^{\mu}\left(J_{2}-\zeta_{1}\right)\right)
\end{aligned}
$$

Φ_{1} and Φ_{2} can be understood as solutions of Fuchsian differential equation

$$
G^{\prime}(x)=\frac{1}{k}\left(\frac{\Omega^{(12)}}{x}+\frac{\Omega^{(23)}}{x-1}\right) G(x)
$$

with regular singularities at 0,1 and ∞ :

$$
\Phi\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{3}-z_{1}\right)^{\frac{1}{k}\left(\Omega^{(12)}+\Omega^{(13)}+\Omega^{(23)}\right)} G\left(\frac{z_{2}-z_{1}}{z_{3}-z_{1}}\right)
$$

Φ_{1} and Φ_{2} then correspond to the two solutions:

$$
\begin{aligned}
& G_{1}(x)=H_{1}(x) x^{\frac{1}{k} \Omega_{12}}(x \rightarrow 0), H_{1} \text { hal. } \\
& G_{2}(x)=H_{2}(x)(1-x)^{\frac{1}{k} \Omega_{23}}
\end{aligned}
$$

around $x=0$ and $x=1$. We have

$$
G_{1}(x)=G_{2}(x) F
$$

Next, let Γ_{n} be a trivalent tree with $n+1$ external edges:
 "trivalent tree"

Take $n+1$ points $p_{1}, \cdots, p_{n}, p_{n+1}$ on the Riemann sphere with $p_{n+1}=\infty$ and $\operatorname{set} z\left(p_{j}\right)=z_{j}$.
\rightarrow space of conformal blocks:

$$
\mathcal{H}\left(p_{1}, \ldots, p_{n}, p_{n+1} ; \lambda_{1}, \ldots, \lambda_{n}, \lambda_{n+1}^{*}\right)
$$

with basis given by labellings of abovetree.

Each trivalent tree represents a system of solutions of the $K Z$ equation:
Consider tree of type $(\cdots(12) 3) \cdots n) n+1)$
\longrightarrow perform coordinate transformations

$$
\begin{aligned}
& J_{k}=z_{k+1}-z_{1} \quad \text { and } \zeta_{k}=u_{k} u_{k+1}-\cdots u_{n-1} \\
& k=1, \cdots, n-1
\end{aligned}
$$

\longrightarrow have solutions of $k Z$ equations around

$$
\begin{aligned}
u_{1}= & \cdots=u_{n-1}=0: \\
\Phi_{1}= & \varphi_{1}\left(u_{1}, \ldots, u_{n-1}\right) u_{1}^{\frac{1}{k} \Omega^{(12)}} u_{2}^{\frac{1}{k}\left(\Omega^{(12)}+\Omega^{(13)}+\Omega^{(23)}\right)} \\
& \cdots u_{n-1}^{\frac{1}{k}} \sum_{1 \leq i<j} \Omega^{(i j)}
\end{aligned}
$$

where $\varphi_{1}\left(u_{1}, \ldots, u_{n-1}\right)$ is matrix-valued not. function.
$\longrightarrow \Phi$ is diagonalized with respect to basis corresponding to $(\ldots(12) 3) \cdots n) n+1)$
Consider the case $n=4$:
For the tree of type $(((12)(34)) 5)$ perform coordinate transformation $\zeta_{1}=v_{1} v_{3}, \zeta_{3}-\zeta_{2}=v_{2} v_{3}$, $J_{3}=v_{3}$ and associate

$$
\begin{aligned}
& \text { and associate } \\
& \Phi_{2}=\varphi_{2}\left(v_{1}, v_{2}, v_{3}\right) v_{1}^{\frac{1}{R}} \Omega_{v_{2}^{(12)}}^{\frac{1}{k} \Omega^{(34)}} v_{3}^{\frac{1}{R}} \sum_{1 \leq i, j \leqslant 4} \Omega^{(i j)}
\end{aligned}
$$

where $\varphi_{2}\left(v_{1}, v_{2}, v_{3}\right)$ is holomaphic around $v_{1}=v_{2}=v_{3}$.
5 types of trees:

"Pentagon relation"

One can go from graph $((((12) 3) 4) 5)$ to graph $(((12)(34)) 5)$ by the connection matrix of Lemma 3 as follows:
(*)

$$
\begin{aligned}
& \psi_{\mu \lambda_{4}}^{\lambda_{5}}\left(\zeta_{2}\right)\left(\psi_{\lambda \lambda_{3}}^{\mu}\left(J_{1}\right) \otimes i d_{H_{\lambda_{4}}}\right) \\
= & \sum_{\sigma} F_{\sigma \mu} \psi_{\lambda \sigma}^{\lambda_{5}}\left(\zeta_{2}\right)\left(i d_{H_{\lambda}} \otimes \psi_{\lambda_{3} \lambda_{4}}^{\sigma}\left(\zeta_{2}-J_{1}\right)\right)
\end{aligned}
$$

In general, the connection matrix for each edge of the Pentagon above is represented
by the composition of connection matrices for $n=3 . \longrightarrow$ call $n=3$ connection matrix "elementary c.m." and the linear map (*) is called "elementary fusion operation" We also have (without proof)
Proposition 3:
For the two edge paths connecting two distinct trees in the Pentagon diagram, the corresponding compositions of elementary connection matrices coincide.
Monodromy representation of braid group:
Take n distinct points $p_{1}, p_{2}, \ldots, p_{n}$ with coordinates satisfying $0<z_{1}<z_{2}<\cdots<z_{n}$ \rightarrow associate level k highest weights $\lambda_{1}, \ldots, \lambda_{n}$ to p_{11}, \cdots, p_{n}. Take $p_{0}=0, p_{n+1}=\infty$ with $\lambda_{0}=0$ and $\lambda_{n+1}=0$.
\rightarrow corresponding conformal blacks:

$$
\begin{aligned}
) & -\left(\left(p_{0}, p_{11}, \ldots, p_{n+1} ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{n+1}^{*}\right)\right. \\
& \Longleftrightarrow \operatorname{Hom}_{0 y}\left(\bigotimes_{j=1}^{n} \bigvee_{j}, \mathbb{C}\right)
\end{aligned}
$$

Denote image of above map by $V_{\lambda_{1}}, \ldots, \lambda_{n}$ with basis given by $\left\{v_{\mu_{0}} \mu_{1} \ldots \mu_{n}\right\}$ such that any triple $\left(\mu_{j-1}, \lambda_{j}, \mu_{j}\right)$ satisfies quantum Clebsch-Gordan condition at level K.
\longrightarrow a generator σ_{i} of the braid group B_{n} defines a linear map:

$$
\rho\left(\sigma_{i}\right): V_{\lambda_{1} \ldots \lambda_{i} \lambda_{i+1} \cdots \lambda_{n}} \longrightarrow V_{\lambda_{1} \cdots \lambda_{i+1} \lambda_{i} \ldots \lambda_{n}}
$$

"interchange of points p_{i} and p_{i+1} ";

$\rho\left(\sigma_{i}\right)$ only depends on homotopy class of above path as $K Z$ connection is flat. In general we have for $\sigma \in B_{n}$:

$$
\rho(\sigma): V_{\lambda_{1}} \ldots \lambda_{n} \rightarrow V_{\lambda_{\pi \cdot \sigma}(1)} \cdots \lambda_{\pi \cdot \sigma(n)}
$$

where $\pi: B_{n} \rightarrow S_{n}$ is natural surjection.
We also have: $\rho(\sigma \tau)=\rho(\sigma) \rho(\tau), \sigma, \tau \in B_{n}$ Let us deal with the case $n=3$:

For the solution

$$
\Phi_{1}\left(u_{1}, u_{2}\right)=\varphi_{1}\left(u_{1}, u_{2}\right) u_{1}^{\frac{1}{12} \Omega_{12}} u_{2}^{\frac{1}{k}\left(\Omega_{12}+\Omega_{13}+\Omega_{23}\right)}
$$

with $u_{2}=z_{3}-z_{1}, u_{1}=\frac{z_{2}-z_{1}}{z_{3}-z_{1}}$, we see

$$
\rho\left(\sigma_{1}\right) u_{1}=-u_{1} \Rightarrow \rho\left(\sigma_{1}\right) \Phi_{1}=P_{12} \exp \left(\frac{\pi \sqrt{-1}}{k} \Omega_{12}\right) \Phi_{1}
$$

where $P_{12}: V_{\lambda_{1} \lambda_{2} \lambda_{3}} \rightarrow V_{\lambda_{2} \lambda_{1} \lambda_{3}}$
Ω_{12} / k is diagonalized for tree basis $(((12) 3) 4)$ with eigenvalue $\Delta_{\lambda}-\Delta_{\lambda_{1}}-\Delta_{\lambda_{2}}$ On the other hand:

$$
\rho\left(\sigma_{2}\right) \Phi_{2}=P_{23} \exp \left(\pi \sqrt{-1} \Omega_{23 / k}\right) \Phi_{21}
$$

where Ω_{23} / k is diagonalized with respect to basis $((1(23)) 4)$.
\rightarrow To combine these local monodromies, we need connection matrix F :

$$
\Phi_{1}=\Phi_{2} F
$$

